skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Peixuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Augmented Lagrangian (AL) methods have proven remarkably useful in solving optimization problems with complicated constraints. The last decade has seen the development of overall complexity guarantees for inexact AL variants. Yet, a crucial gap persists in addressing nonsmooth convex constraints. To this end, we present a smoothed augmented Lagrangian (AL) framework where nonsmooth terms are progressively smoothed with a smoothing parameter $$\eta_k$$. The resulting AL subproblems are $$\eta_k$$-smooth, allowing for leveraging accelerated schemes. By a careful selection of the inexactness level  (for inexact subproblem resolution), the penalty parameter $$\rho_k$$, and smoothing parameter $$\eta_k$$ at epoch k, we derive rate and complexity guarantees of  $$\tilde{\mathcal{O}}(1/\epsilon^{3/2})$$ and $$\tilde{\mathcal{O}}(1/\epsilon)$$  in convex and strongly convex regimes for computing an -optimal solution, when $$\rho_k$$ increases at a geometric rate, a significant improvement over the best available guarantees for AL schemes for convex programs with nonsmooth constraints. Analogous guarantees are developed for settings with $$\rho_k=\rho$$ as well as $$\eta_k=\eta$$. Preliminary numerics on a fused Lasso problem display promise. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026