- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Fang, Ethan X (1)
-
Shanbhag, Uday V (1)
-
Zhang, Peixuan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Augmented Lagrangian (AL) methods have proven remarkably useful in solving optimization problems with complicated constraints. The last decade has seen the development of overall complexity guarantees for inexact AL variants. Yet, a crucial gap persists in addressing nonsmooth convex constraints. To this end, we present a smoothed augmented Lagrangian (AL) framework where nonsmooth terms are progressively smoothed with a smoothing parameter $$\eta_k$$. The resulting AL subproblems are $$\eta_k$$-smooth, allowing for leveraging accelerated schemes. By a careful selection of the inexactness level (for inexact subproblem resolution), the penalty parameter $$\rho_k$$, and smoothing parameter $$\eta_k$$ at epoch k, we derive rate and complexity guarantees of $$\tilde{\mathcal{O}}(1/\epsilon^{3/2})$$ and $$\tilde{\mathcal{O}}(1/\epsilon)$$ in convex and strongly convex regimes for computing an -optimal solution, when $$\rho_k$$ increases at a geometric rate, a significant improvement over the best available guarantees for AL schemes for convex programs with nonsmooth constraints. Analogous guarantees are developed for settings with $$\rho_k=\rho$$ as well as $$\eta_k=\eta$$. Preliminary numerics on a fused Lasso problem display promise.more » « lessFree, publicly-accessible full text available August 1, 2026
An official website of the United States government
